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Introduction 
When choosing a state estimation approach, several competing concerns must be balanced: 

computational effort, system noise, system non-linearity, estimator accuracy, and robustness all form a 

trade space that must be carefully considered before choosing a particular approach. In this project, we 

explored the performance of several different state estimation problems on an exemplar system 

consisting of two masses coupled by (nonlinear) springs and dampers. The system was chosen due to its 

ability to model the dynamics of a large variety of physical systems and relative simplicity. We used four 

different metrics to evaluate the performance of each estimator under a wide variety of degree of noise 

and degree of nonlinearity. 

System Model 

The system states are the displacements and velocities of each mass. The net forces acting on each mass 

are modeled by the following equations: 
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Experimental Setup 

All experiments were performed using Simulink. There are four models that are run: a calibration model, 

and three models corresponding to the Luenberger Observer, EKF, and UKF respectively. A master script 

loads parameters, running each model in turn and gathering statistics. Source code is available on the 

attached CD.  

Metrics 

Four metrics were chosen. The first two (median RMSE and maximum RMSE) focus on average case and 

worst case estimator error respectively. These metrics are appropriate for situations where 

computational effort is not a direct concern. In real systems, hardware constraints will play an important 

role in which estimators are computationally feasible. To that end, our second set of metrics (median 

MSE x average computational time and maximum MSE x average computational time) are designed to 

capture the idea of “bang for the buck” in the average and worst case scenarios.  

Methods and Estimator Design 
Five common estimators were selected for evaluation: a Luenberger observer with LQR-designed gains 

(steady-state Kalman Filter gain), a Kalman filter, an Extended Kalman Filter, an Unscented Kalman Filter, 

and a Particle Filter.  

Extended Kalman Filter 

The extended Kalman was also applied to the system, see Equation 1. The extended Kalman filter is an 

extension of the Kalman filter. Instead of linearizing the system about one point it linearizes the data 

based on the current state.  It was not possible to directly convert the nonlinear continuous equations 

into nonlinear discrete equations; rather the data was linearized in continuous time and then converted 

to discrete equation. The other difference from the Kalman filter is that the extended Kalman filter 



updates the state based on the nonlinear equation rather then the linerazied equations. To update the 

state the data had to be simulated in continuous time since over the discrete time period since it was not 

possible to have non linear discrete equations. 
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Unscented Kalman Filter 

We implemented the symmetric UKF algorithm presented in [Simon]: 

For the time update, generate )(−
iχ  using the SVD of )(

1
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2  where n  is the 

dimension of the space, iσ  is the ith singular value that has been regularized (if τσ <≤ i0 , set τσ =i ), and 

iv is the ith column of the V matrix and 0
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0 =−χ . Geometrically, these sigma points correspond to the 

center of the distribution and steps along each of the covariance’s eigen-axes. The weights iw  are  
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where n−= 3κ  has been chosen to minimize distortion of higher order moments of the distribution. The 

previous mean is added to the sigma points, which are then propagated through the system dynamics 

and then used to empirically estimate the prior mean and state covariance. 
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During the measurement update, a new set of sigma points based on the new prior covariance are 

generated. The new sigma points are propagated through the output equation (linear in our case) and 

used to empirically estimate the output covariance, the cross covariance, and the Kalman gain.  
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Finally, the posterior estimates of state mean and covariance are generated by applying the Kalman gain 

to each sigma point and computing weighted sample expectations.  
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Particle Filter 

Our final estimation method was an implementation of a SIR (sample, importance, resample) particle 

filter with roughening to prevent sample impoverishment, following the algorithm in [Simon].  

An initial population kX of particles is sampled from the prior distribution [ ]1:11:1 ,| −− kkk

k yxxP . Each of these 

particles are propagated using the system dynamics which were approximated by Euler’s method. For 

each particle, we computed the particle’s importance weight [ ]k

ik

i

k XyPq |ˆ= . The sample weights are 

normalized to have unit sum. We then resample the particles with replacement, each particle being 

chosen with likelihood equal to its importance weight. The new population of particles is asymptotically 

distributed as [ ]kkk

k yxxP :11:1 ,| −
. These samples are then roughened by adding white noise which prevents 

sample impoverishment (i.e. lack of any population diversity in the particles). The output state was 

computed as the sample mean of the posterior particle distribution.  

Unfortunately, the particle filter proved to be computationally untractable, largely due to implementation 

issues. The filter was implemented as a mixture of a C++ Simulink™ block that provided the core 

algorithm and Matlab™ m-files that implemented the specific system dynamics and output likelihood 

calculations. As a consequence, each iteration of the algorithm required O(2n) Matlab function calls, 

resulting in a ~38 hr run-time for a single test scenario with 50,000 particles. As the figures below 

demonstrate, 50,000 particles were not sufficient to accurately capture the unmeasured system 

dynamics. 

 



Results and Analysis 

Full simulation results are presented in Appendix A

under each of the four metrics we chose, with the best highlighted in gray. For the “bang for the buck” 

tests, the LQR designed Luenberger observer was not considered for recommendation outside of the 

linear case. In all cases, lower scores indicate better pe

gray.  

Computational Effort 

 

The UKF is, on average, 50x slower than the KF and 14x slower than the EKF. 

 

Median RMSE Metric 

Noise L
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K
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Low 0.001 0.001 0.002 0.002 0.00131 0.001 0.002

Medium 0.029 0.028 0.016 0.002 0.02854 0.028 0.016

High 0.901 0.896 0.509 0.027 0.90178 0.896 0.507

Linear Negligible Nonlinearity

For the median RMSE metric the UKF is the clear winner, dramatically outperforming EKF and KF. 

Surprisingly, the UKF outperforms the EKF and KF even for the purely linear system. For increasing non

linearity, the UKF typically out-performs the KF 
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For the median RMSE metric the UKF is the clear winner, dramatically outperforming EKF and KF. 

Surprisingly, the UKF outperforms the EKF and KF even for the purely linear system. For increasing non

performs the KF by a factor of between 3 and 200, depending on noise. 
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0.001 0.207 0.205 0.002 0.001

0.001 0.207 0.205 0.017 0.001

0.131 0.909 0.904 0.577 0.312

Moderate Nonlinearity Large Nonlinearity

 

For the median RMSE metric the UKF is the clear winner, dramatically outperforming EKF and KF. 

Surprisingly, the UKF outperforms the EKF and KF even for the purely linear system. For increasing non-

or of between 3 and 200, depending on noise.  

Unscented Kalman 



Maximum RMSE Metric 
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Low 0.005 0.005 0.002 0.003 0.00714 0.007 0.002 0.003 0.14943 0.148 0.002 0.004 0.334 0.332 0.002 0.003 0.454 0.449 0.002 0.003

Medium 0.177 0.177 0.009 0.004 0.17889 0.178 0.009 0.004 0.28939 0.288 0.009 0.004 0.439 0.436 0.009 0.003 0.507 0.502 0.009 0.003

High 5.616 5.596 0.262 5.48 5.61841 5.599 0.263 5.487 5.77437 5.754 0.271 4.97 5.713 5.693 0.286 7.905 5.629 5.606 0.322 19.07

Linear Negligible Nonlinearity Low Nonlinearity Moderate Nonlinearity Large Nonlinearity

 

For maximum MSE error, the EKF and UKF generally trade off. This is partly due to greatly increased 

range of UKF error for large noise, although the variance is still less than that of the EKF. For applications 

that require strong bounds on maximum error, the EKF appears, on balance, to be the better choice for 

this system.  

Combined Median MSE and Computational Effort 
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Low 2E-09 2E-07 3E-06 2E-05 2E-09 2E-07 3E-06 2E-05 2E-06 0.0002 5E-06 2E-05 3E-05 0.0026 3E-06 2E-05 6E-05 0.006 3E-06 1E-05

Medium 1E-06 0.0001 0.0001 2E-05 1E-06 0.0001 0.0001 2E-05 4E-06 0.0004 0.0001 2E-05 3E-05 0.0025 0.0001 2E-05 6E-05 0.006 0.0001 1E-05

High 0.0012 0.1151 0.1338 0.0054 0.0012 0.1152 0.133 0.0053 0.0012 0.1163 0.1361 0.12 0.0013 0.1245 0.1506 0.1262 0.0012 0.1172 0.1719 0.716

Linear Negligible Nonlinearity Low Nonlinearity Moderate Nonlinearity Large Nonlinearity

 

Incorporating both mean square error and average computation time gives the LQR designed Luenberger 

observer a dramatic advantage. As a consequence, the observer was only considered for low noise, and 

no or negligible nonlinearity cases. In this scenario, we can see that despite the dramatically increased 

computational complexity, the UKF tends to offer the best “bang for the buck” in a wide variety of cases.   

Combined Maximum MSE and Computational Effort 
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Low 4E-08 4E-06 1E-06 8E-05 7E-08 7E-06 1E-06 8E-05 3E-05 0.003 2E-06 1E-04 2E-04 0.016 1E-06 6E-05 3E-04 0.029 2E-06 6E-05

Medium5E-05 0.004 4E-05 1E-04 5E-05 0.005 4E-05 1E-04 1E-04 0.012 4E-05 1E-04 3E-04 0.027 4E-05 6E-05 4E-04 0.036 4E-05 6E-05

High 0.045 4.491 0.035 221.1 0.045 4.495 0.036 221.6 0.048 4.748 0.038 181.9 0.047 4.648 0.042 460.1 0.045 4.506 0.054 2678

Linear Negligible Nonlinearity Low Nonlinearity Moderate Nonlinearity Large Nonlinearity

 

A running theme of the combined metrics is the fact that the almost trivial computation required to 

implement the LQR designed Luenberger observer gives it a dramatic advantage. Again, the observer was 

only considered for the low noise and minimal non-linearity cases. For this pessimistic scenario, the EKF 

dominates, in large part due to the greatly increased range of UKF mean square errors in greater higher 

noise. 

Conclusions and Future Work 
The ideal choice of estimator is extremely application dependent. We examined a variety of scenarios and 

showed that the EKF tends to give better worst cast performance in the presence of increased noise while 

the UKF is generally the best performing estimator in terms of median root mean square error. Our 

particle filter implementation, which we initially expected would out perform all the other approaches in 

terms of accuracy, proved to be computationally infeasible.  

In terms of future work, there are several relatively straight forward optimizations to the particle filter 

that could be made, including vectorizing the Matlab portions and applying the Mex compiler to produce 

native code. If an improvement of 3-4 orders of magnitude were possible, we could justify repeating the 

experiments with a suitably large number of particles to get reasonable accuracy.  

Works Cited 
[Simon] Dan Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, Wiley 

Interscience, 2006. 



Appendix A: Simulation Results 
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1E-06 0 1.53486 1.33627 0 0.000731 0.00108 0.001635 0.005426 0.000001

1E-06 -0.001 1.31017 1.336348 0 0.000966 0.00131 0.001884 0.007142 0.000001

1E-06 -0.1 1.3058 1.336339 0 0.01284 0.03763 0.062048 0.149434 0.001132

1E-06 -1 1.33453 1.336851 0 0.036685 0.13704 0.184306 0.334227 0.00634

1E-06 -10 1.36127 1.336397 0 0.108631 0.20723 0.261071 0.453527 0.012876

0.001 0 1.31099 1.336586 0 0.013746 0.02855 0.047785 0.177395 0.00062

0.001 -0.001 1.31086 1.336998 0 0.013745 0.02854 0.047784 0.178888 0.000619

0.001 -0.1 1.33538 1.336699 0 0.032852 0.0518 0.078303 0.289389 0.001202

0.001 -1 1.30561 1.336932 0 0.059501 0.13394 0.186762 0.438684 0.005662

0.001 -10 1.33241 1.337234 0 0.114876 0.20677 0.268951 0.506704 0.012282

1 0 1.31268 1.336557 0 0.434246 0.9011 1.510988 5.615642 0.620456

1 -0.001 1.33083 1.336892 0 0.434092 0.90178 1.511616 5.618408 0.620501

1 -0.1 1.30438 1.336806 0 0.444378 0.90479 1.520198 5.774374 0.617448

1 -1 1.34238 1.336463 0 0.50967 0.93795 1.553332 5.71281 0.60869

1 -10 1.29717 1.337457 0 0.469658 0.90861 1.522756 5.628762 0.609031

Experiment LQR Luenberger Observer
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1E-06 -1 1.33453 1.491636 0.000056 0.035986 0.13587 0.18257 0.331713 0.006265

1E-06 -10 1.36127 1.446189 0.000056 0.106948 0.20521 0.258578 0.449071 0.012679

0.001 0 1.31099 1.465127 0.000336 0.013692 0.02834 0.047453 0.176821 0.000614

0.001 -0.001 1.31086 1.506287 0.000391 0.013677 0.02834 0.047478 0.178294 0.000614

0.001 -0.1 1.33538 1.476393 0.000596 0.03254 0.05143 0.077813 0.28775 0.001189

0.001 -1 1.30561 1.499739 0.000596 0.058645 0.1328 0.185162 0.43571 0.005585

0.001 -10 1.33241 1.529879 0.000596 0.114049 0.2047 0.266586 0.502232 0.012092

1 0 1.31268 1.462218 0.011561 0.432827 0.89595 1.503712 5.596087 0.614267

1 -0.001 1.33083 1.495676 0.009378 0.432264 0.89637 1.503631 5.598831 0.614313

1 -0.1 1.30438 1.487147 0.01659 0.442106 0.90052 1.511086 5.753774 0.611288

1 -1 1.34238 1.452819 0.016589 0.507429 0.93165 1.544646 5.692826 0.602782

1 -10 1.29717 1.552221 0.01508 0.467616 0.90412 1.515557 5.605583 0.603118

Experiment Kalman Filter
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1E-06 -0.001 1.31017 1.851913 0.000109 0.001669 0.0024 0.003186 0.006396 0.000001

1E-06 -0.1 1.3058 1.954365 0.000109 0.001798 0.00296 0.004023 0.00678 0.000002
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0.001 -1 1.30561 1.858508 0.000284 0.008965 0.0167 0.027346 0.098298 0.000184

0.001 -10 1.33241 1.853511 0.000298 0.009285 0.0168 0.026821 0.0867 0.000173

1 0 1.31268 1.811692 0.003015 0.261887 0.50874 0.8553 2.839678 0.190184

1 -0.001 1.33083 1.94174 0.003761 0.263009 0.50719 0.855561 2.844258 0.190225

1 -0.1 1.30438 1.83675 0.003027 0.270975 0.51318 0.866417 2.876667 0.18975

1 -1 1.34238 1.876772 0.006917 0.286219 0.53984 0.866889 2.996261 0.191178

1 -10 1.29717 1.856395 0.016352 0.321936 0.57666 0.908106 2.861806 0.183327

Experiment EKF
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0.001 -0.1 1.33538 8.511662 0.00006 0.000807 0.00164 0.002676 0.003747 0.000001

0.001 -1 1.30561 8.709157 0.00006 0.000867 0.00143 0.00175 0.002854 0

0.001 -10 1.33241 8.752783 0.00006 0.001012 0.00128 0.00151 0.002925 0

1 0 1.31268 8.762593 0.000068 0.004127 0.02708 0.171716 5.479637 0.14392

1 -0.001 1.33083 8.718774 0.000083 0.00418 0.02681 0.172049 5.486781 0.143928

1 -0.1 1.30438 8.974281 0.005904 0.046794 0.1277 0.302166 4.970234 0.156403

1 -1 1.34238 8.649669 0.007047 0.049403 0.13092 0.574709 7.905448 0.46032

1 -10 1.29717 8.707433 0.03376 0.082486 0.31186 0.939726 19.07172 1.353962

Experiment UKF

 



Median RMSE 

 

0.001 0.01

Median RMSE (Linear Case)

0.001 0.01

Median RMSE (Negligible Nonlinearity)

0.001 0.01

Median RMSE (Low Nonlinearity)

0.001 0.01

Median RMSE (Moderate Nonlinearity)

0.001 0.01

Median RMSE (Large Nonlinearity)

0.1 1

LQR

KF

EKF

CKF

Median RMSE (Linear Case)

Large Noise

Moderate Noise

Low Noise

0.1 1

LQR

KF

EKF

CKF

Median RMSE (Negligible Nonlinearity)

Large Noise

Moderate Noise

Low Noise

0.1 1

LQR

KF

EKF

CKF

Median RMSE (Low Nonlinearity)

Large Noise

Moderate Noise

Low Noise

0.1 1

LQR

KF

EKF

CKF

Median RMSE (Moderate Nonlinearity)

Large Noise

Moderate Noise

Low Noise

0.1 1

LQR

KF

EKF

CKF

Median RMSE (Large Nonlinearity)

Large Noise

Moderate Noise

Low Noise

 



Maximum RMSE 
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Combined Median RMSE and Time 
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Combined Maximum RMSE and Time
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